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Three metrics of species diversity — species richness, the Shannon index and the
Simpson index — are still widely used in ecology, despite decades of valid critiques lev-
eled against them. Developing a robust diversity metric has been challenging because,
unlike many variables ecologists measure, the diversity of a community often cannot
be estimated in an unbiased way based on a random sample from that community.
Over the past decade, ecologists have begun to incorporate two important tools for
estimating diversity: coverage and Hill diversity. Coverage is a method for equalizing
samples that is, on theoretical grounds, preferable to other commonly used methods
such as equal-effort sampling, or rarefying datasets to equal sample size. Hill diversity
comprises a spectrum of diversity metrics and is based on three key insights. First,
species richness and variants of the Shannon and Simpson indices are all special cases
of one general equation. Second, richness, Shannon and Simpson can be expressed on
the same scale and in units of species. Third, there is no way to eliminate the effect of
relative abundance from estimates of any of these diversity metrics, including species
richness. Rather, a researcher must choose the relative sensitivity of the metric towards
rare and common species, a concept which we describe as ‘leverage.” In this paper we
explain coverage and Hill diversity, provide guidelines for how to use them together to
measure species diversity, and demonstrate their use with examples from our own data.
We show why researchers will obtain more robust results when they estimate the Hill
diversity of equal-coverage samples, rather than using other methods such as equal-
effort sampling or traditional sample rarefaction.
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Most species are rare, and therefore efforts to measure and compare biodiversity suffer from

sampling issues related to undetected species. How can we best recognize and mitigate
_» sampling limitations in biodiversity measurement? This guide recommends using two tools:
é coverage to measure and equalize sample completeness, and Hill diversity as a unifying

concept to link different measures of diversity. The guide explores how biodiversity metrics
work and tradeoffs among them. Using both conceptual and applied examples, the guide
shows how to use coverage and Hill diversity together to grapple productively with sampling
limitations, and make more meaningful biodiversity measurements and comparisons.
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Introduction

Species diversity is one of the more frequently measured
quantities in ecology, yet how to measure it is complex,
and sometimes contentious. The past decade has seen great
advances in comparing and unifying various diversity met-
rics, and also in developing ways to standardize samples
prior to measuring diversity (Jost 2006, Ellison 2010,
Chiarucci et al. 2011, Chao and Jost 2012, Colwell et al.
2012, Chao and Chiu 2016, Cox et al. 2017, Chao et al.
2019a, 2020). This lacter step is necessary because — in
contrast to many variables ecologists measure, for which a
random sample from a community provides a reasonably
unbiased estimate of the community itself — most spe-
cies diversity values estimated from samples are a biased
measure of the diversity of the larger community. This is
mainly because the true relative abundance of rare species
is poorly captured in samples, in which those species tend
to appear only once or not at all. Here, we provide a con-
ceptual guide to best practices for comparing the level of
biodiversity of two or more communities, based on samples
from those communities. We begin by reviewing methods
for standardizing samples, which is an important but often
overlooked step in measuring diversity. In this section we
review ‘coverage, a conceptually elegant, but under-used,
method for standardizing samples. We then provide a
guide to using Hill diversity. We try to make this concept
more intuitive to ecologists by showing how different Hill
diversities all calculate the mean rarity of the species in the
community, but using different types of means (arithmetic,
geometric and harmonic). We also draw parallels between
Hill diversity and a tool familiar to many ecologists: the
link functions of generalized linear models. We use ‘relative
abundance’ throughout to mean the proportion of individ-
uals belonging to a given species, but in most cases other
measures, like proportional biomass or percent cover, could
be used instead.

We assume that ecologists wish to determine which com-
munities are more and less diverse, and by how much; in
other words, that they aim to measure an ‘effect size’ (Chao
and Jost 2012, Chase and Knight 2013). Thus, we advocate
for methods that will accurately reflect relative (but not nec-
essarily absolute) differences in diversity. To demonstrate the
preferred tools for standardizing samples and quantifying
diversity — coverage and Hill diversity — we analyze a small
data set on wild bees we collected from four meadows.

Equalizing samples

Diversity can only be meaningfully compared across com-
munities that have been sampled equivalently in some way.
Unfortunately, there are multiple ways to standardize sam-
ples, and the choice of sample standardization method can
strongly influence results. In this section, we consider three
main ways ecologists standardize their samples: by equalizing
effort, equalizing sample size or equalizing coverage.
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Conceptual problems with traditional methods of
equalizing samples

Many ecologists build equal-effort sampling into their scudy
designs. Effort can be measured as the amount of time spent
sampling, the area sampled, the number of traps set out or
the like. This seems like the right way to compare communi-
ties: sample the same way and the same amount in each, and
any differences should reflect only the diversity of each com-
munity, and not how the communities were sampled. But
this is not true. In reality, two factors determine how well the
sample represents the true diversity of the community: how
hard one looks, and also how many species there are and in
what relative abundances. Equal-effort sampling only deals
with the first factor. A key problem with equal-effort sam-
pling is that sample size generally varies across communities
given equal effort, and sample size partly determines how well
the observed abundance distribution matches the true spe-
cies abundance distribution of the community. For instance,
a small sample is likely to contain only a few species, all of
them common. As samples contain more individuals, the
number of species rises and sample diversity grows (Preston
1948). In sum, diversity estimates (especially richness) based
on equal-effort sampling underestimate community diversity
from samples that contain fewer individuals, because these
samples often include fewer species by chance alone, regard-
less of the community from which they are drawn (Gotelli
and Colwell 2001).

A second way ecologists standardize samples is by sam-
ple size; for example, by removal of individuals from larger
samples undil all samples have the same number of indi-
viduals (rarefaction). However, rarefaction does not provide
unbiased samples either, because it still does not account for
the distribution of relative abundances in the whole, larger
community (Willis 2019). Because more diverse communi-
ties usually have both more and also rarer species, they also
require more effort to characterize. Furthermore, it is not
always possible to predict, from smaller samples, which of
two communities would appear more diverse with much
larger samples. In sum, sample-size standardization leads to
larger underestimates of diversity for more diverse communi-

ties (Chao and Jost 2012).

Coverage: a solution

Sample-size and effort-based standardization do not fairly rep-
resent community diversity because they do not account for
the underlying species abundance distribution of the commu-
nity being sampled (Brose et al. 2003, Cao et al. 2007, Beck
and Schwanghart 2010, Willis 2019). In contrast, a newer
method, coverage (Box 1), accounts for both the amount of
sampling and, to a much greater extent than the other meth-
ods, the true diversity of the community. Coverage thereby
recognizes that more diverse communities require more sam-
pling in order to be equally well-characterized. Coverage was
discovered in the 1940s by the founder of computer science,
Alan Turing, but was only recently introduced as a tool for



Box 1. What is coverage?

Coverage is a measure of how completely a community has been sampled. Specifically, it estimates the total true relative abundance
in the community of all the species represented in the sample. Coverage can be visualized as the complement of the slope of a species
accumulation curve (Fig. B1). Coverage increases more slowly as sample size increases and more and more species are detected. In
ecological communities, this slowing is often quite dramatic because, while most species in an ecological community are likely rare,
most individuals in the community belong to common species.
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Figure B1. (a) As an ecologist collects individuals, there is some probability that the next individual would be from an already detected
species (short horizontal purple arrow), or from a new one (short diagonal pink arrow). The chance that it is from a new species is the
slope of the species accumulation curve (red line) at that point. The probability of not picking a new species (1-the slope) is the coverage,
which approaches 1 as the curve flattens out. (b) Two species accumulation curves at equal effort (ends of black curves), equal size (light
blue arrows) and equal coverage (red arrows). These three data standardization methods often result in different diversity estimates. (c)
At higher values of coverage, to obtain even modest gains in coverage, sample sizes may need to increase by orders of magnitude.

To estimate coverage, only three parameters are needed (Chao and Jost 2012):

f;> the number of singletons (species represented by only 1 individual) in the sample
/5> the number of doubletons (species represented by only 2 individuals) in the sample
n, the total number of individuals in the sample

Chao and Jost (2012) provide the following equation for coverage (C):

Al (=) A
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R code that will estimate coverage from sample abundances is available with the functions INEXT’ and ‘estimateD’ in the R pack-
age iNEXT (Hsieh et al. 2016). If researchers do not sample individuals, occurrence counts in grids or other subunits may be used.

At present, standardizing samples based on coverage faces two unsolved issues. First, the best available method for rarefying to
equal coverage (Chao and Jost 2012, Chao et al. 2014a, Hsich et al. 2016) does so indirectly. Both expected coverage and expected
diversity increase with sample size: for any given sample, increasing sample size can only increase both coverage and diversity (Chao
and Jost 2012, Chao et al. 2014a, Hsieh et al. 2016). Coverage-based rarefaction and extrapolation extends traditional rarefaction
methods (Colwell et al. 2012) by transforming the x-axis from sample size to expected coverage through a theoretically derived equa-
tion that uses observed sample frequences and sample size as its parameters (Chao and Jost 2012, Chao et al. 2014a, Hsich et al.
2016). While on average, if one knows how much bigger or smaller a sample is than one’s reference, one knows how much more or
less coverage that sample will have, in a particular case the actual coverage may be higher or lower than expected. This is another way
of saying there is uncertainty in the x-axis in coverage-based rarefaction and extrapolations.

Second, as a result of the indirect rarefaction procedure, the confidence intervals (CI) provided for coverage-standardized samples
are too narrow (i.e. anti-conservative). The uncertainty in the x-axis (coverage) is not propagated up to the y-axis (diversity), and as a
result, the estimate of the uncertainty in the y-axis is smaller than it needs to be. Newer approximate CI are not formally conditioned
on sample size (Chao et al. 2020). Although at smaller sample sizes these also exhibit anti-conservatism, they become exact asymptoti-
cally (Anne Chao, pers. comm.).
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standardizing samples in ecology (Alroy 2010, 2017, Jost
2010, Chao and Jost 2012, Chao et al. 2014a). Coverage
is a theoretically elegant way to standardize samples, and is
increasingly used in the ecological literature.

Coverage describes how well a sample captures the true
diversity of the whole community, including species that have
not yet been detected. More precisely, coverage estimates the
proportion of individuals in the (whole) community that
belong to species present in the sample. As this proportion
increases, the share of individuals in the community that
belong to undetected species falls. For example, a coverage
of 0.98 means that 2% of the individuals in the community
being sampled belong to species the researcher has missed.
For a sample to contain enough species to represent 98% of
the individuals in a more diverse community, it usually must
be larger than a sample with 98% coverage from a less diverse
community. Thus, when ecologists standardize samples by
coverage, they compare samples that have more individuals
from some communities than others. This results in more
balanced information from each community.

Sampling with equal coverage isn’t quite what we might
want: to sample each community until the same propor-
tion of its diversity had been recorded. For example, using
species richness as the metric, one could imagine sam-
pling until 90% of the species in each community had
been detected. In this case, the comparison would be fair.
Unfortunately, this method is not possible (Chao et al.
2020), because it is not usually possible to know how
many species are truly there, nor in what proportions — if
it were, we wouldn’t need to estimate diversity. Given that
this ideal cannot be implemented, coverage is a practical
approach to achieving more comparable samples, using
information available to researchers.

The key insight behind coverage is that the proportion of
individuals in the community belonging to undetected spe-
cies can be estimated reliably, based only on the frequencies
of species already in the sample (Good and Toulmin 1956,
Chao and Jost 2012, Zhang 2016). This concept is best
illustrated with a species accumulation curve (Box 1, Fig.
B1(a)). Imagine being at the endpoint of the curve, about to
sample one more individual. The pool that individual will be
sampled from contains all the as-yet-unsampled individuals
in the community, most of which belong to species already
detected, but some of which do not. If the next individual
obtained is a new species, the species accumulation curve
goes up one step for a slope of 1. If it is not a new species, the
curve moves horizontally one step for a slope of 0 (Fig. B1(a),
arrows). Thus, the expected slope of the species accumula-
tion curve represents the probability that the next individual
sampled will belong to a new species. This slope is (1-cov-
erage). As coverage approaches 1, the species accumulation
curve approaches its asymptote.

While ecologists have long used the slope of the species
accumulation curve to measure sampling completeness, the
advantage of the more recent formalization is that even when
sampling is incomplete, samples can be compared at equal
coverage (Fig. B1(b)). This comparison is ‘fair’ in the sense
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that the same proportion of individuals from each commu-
nity is represented by the species in each sample. In sum,
while it cannot remove sample diversity’s dependence on
sample completeness (Willis 2019), coverage is the fairest
available way to standardize samples because it standardizes
what is known (the sample) relative to what is there (the true
community).

What coverage clarifies about species richness

Ecologists may be attracted to species richness as a diversity
metric because true richness depends only on the number
of species, but not on their relative abundances. However,
estimates of richness are, in fact, highly sensitive to the rela-
tive abundances of species in the community being sampled.
The concept of coverage offers a nice demonstration of how
this is so.

Although sample coverage increases with sampling, the
rate of this increase slows as sampling proceeds (Fig. B1(c)).
This is because after initial sampling, the vast majority of
individuals in a community do belong to species represented
in the sample, and it takes a lot of work to find those com-
paratively few individuals belonging to the new, rare species.
This means that sample richness depends on how rare the
rare species are. For example, imagine two communities, one
in which all species have the same abundance, and the second
in which a few species are very common, but most are very,
very rare. In the first community, at low and medium sample
sizes, finding a new species with additional sampling remains
quite likely. In the second, once samples are large enough
that the common species have been detected, the chance of
detecting a new (and very rare) species with additional sam-
pling is low. This means that even if both communities had
the same richness, samples from the first community would
usually contain more species. In sum, species richness esti-
mates are not only sensitive to the size of the sample and the
true number of species in the community, but also to species
relative abundances in the community, just like other diver-
sity indices.

Diversity metrics

In this section, we briefly review problems with species
richness, and the traditional Shannon and Simpson indi-
ces, which are the ways ecologists most often measure the
diversity of a community (Magurran and McGill 2011). We
then explain Hill diversity, a general approach that includes,
as special cases, species richness and modified versions of
the traditional Shannon and Simpson indices. There is an
increasing consensus that Hill diversity is the preferred way to
measutre not only the species diversity of a community, which
is the subject of this paper, but also differentiation among
communities (Jost 2007, Ellison 2010, Chao and Chiu 2016,
Botta-Dukdt 2018, Chao et al. 2019b, Ohlmann et al. 2019)
functional and phylogenetic diversity (Chao et al. 2014b,
Kang et al. 2016), genetic diversity (Jost 2008, Sherwin et al.
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Figure 1. Observed rank—abundance distributions for the bee sam-
ples from our four meadows. The sample from the green square
community has strong dominance by a small number of species
with a long ‘tail’ of rare species. The sample from the purple triangle
community also has strong dominance and a long a tail of rare spe-
cies, although it has fewer species of intermediate rarity. The sample
from the orange circle community has a much shorter tail of rare
species. The pink diamond community sample has the least varia-
tion in rarity, and the fewest species. Diversity metrics summarize
these distributions to enable quantitative comparisons.

2017, Alberdi and Gilbert 2019) and evenness (Chao
etal. 2019a).

To illustrate our main points, we present some analyses of
a small data set extracted from a larger study (Roswell et al.
2019a, b). This data set includes wild bees we collected with
hand nets from four meadows, using equal effort: seven
person-hours over three consecutive days in each meadow
(Fig. 1). In the study from which these data are taken, we
sampled the entire meadow, collecting bees that contacted
the reproductive parts of any flower within a 1-m radius
semicircle in front of the observer, in timed 30-min tran-
sects that crossed back and forth throughout the meadow.
The meadows were all mowed annually, and some were also
burned to maintain an early state of succession, and had been
seeded within the last four years with a mix of ‘pollinator
plants,” though many of the plants from which we sampled
colonized naturally.

In the first meadow (green squares in Fig. 1), we collected
578 individual bees that we identified to 40 bee species. In
the second meadow (purple triangles), we collected 442 indi-
viduals of 40 species. In the third meadow (orange circles),
we collected 745 individuals of 32 species. In the fourth
(pink diamonds), we collected 225 individuals of 29 species.
In each case, the pool we sampled included the entire bee
fauna that foraged in each meadow during the three days of

sampling, our operational definition of a ‘bee community.’
The question we seek to answer is, ‘which bee communi-
ties are more and less diverse, and by how much?” While in
fact, these data were not collected along an ecological gradi-
ent that would provide a hypothesis-driven reason to answer
this question, the reader can imagine scenarios that might
have caused differences in diversity in the meadows, such as
landscape context, disturbance history or the composition of
the plant community. Although our study design does not
let us test these ideas, we use this dataset to show how the
differences in diversity we would report, if the goal of the
original study were to compare diversity, could vary with the
amount of data collected, the method chosen to standardize
samples, and the diversity metric used. In this section, we use
our bee community data to illustrate points we make about
Hill diversity. In the final section of the paper, we use these
same dataset to conduct a demonstration of how researchers
can use sample standardization together with Hill diversities
to analyze their own data.

Conceptual problems with traditional diversity
metrics

The number of species in a sample (sample richness) is a
very flawed measure of diversity. Richness is strongly asso-
ciated with the number of individuals in the sample, espe-
cially at the earlier stages of sampling (Fig. 2). Furthermore,
as sampling proceeds, the accumulation curves representing
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Figure 2. Species accumulation curves for number of species
observed (y) versus the number of individuals sampled (x) for the
bee communities in four meadows. The clouds of points represent
the Chaol estimates for the meadow of the same color. Chaol pre-
dictions seem likely to continue increasing in most examples.
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different communities often cross (Lande et al. 2000; col-
ored lines in Fig. 2). This means that the relative richness of
two communities, as measured at a smaller sample size, does
not predict their relative richness at a larger sample size well
(Cao et al. 2007, Coddington et al. 2009, Haegeman et al.
2013). This is often true even when estimators such as Chaol
are used to predict true diversity (colored clouds of points
in Fig. 2).

Because richness is so sensitive to sampling effort and rela-
tive abundance, its estimation can hinge on how samples are
standardized. Even the best asymptotic richness estimators,
such as Chaol (Gotelli and Colwell 2011), cannot reliably
predict the true community diversity (Chao and Jost 2015,

Fig. 2). The problem is that both sample richness and sample-
based richness estimators are strongly influenced by the rarest
species, which are precisely the species that we know least
about. This is another way of saying that richness has high
uncertainty. In fact, in the context of estimating and com-
paring community diversity from samples, this uncertainty is
often insurmountable (Haegeman et al. 2013).

The traditional diversity indices that explicitly include
relative abundance (Magurran and McGill 2011), such as
the Shannon (Shannon and Weaver 1963) and Simpson
(Simpson 1949) indices, are more robust than richness to
the sampling problems outlined above. However, their use
creates a new set of problems: these indices have different

Box 2. Problems with the traditional Shannon and Simpson indices

‘The first problem with traditional diversity indices is that they measure very different things (Tuomisto 2010). Species richness, of
course, measures the number of species. The Shannon index measures uncertainty about the identity of species in the sample, and its
units quantify information (bits; Hurlbert 1971), while the Gini—Simpson (1 — Simpson’s original index) measures a probability, spe-
cifically, the probability that two individuals, drawn randomly from the sample, will be of different species (Simpson 1949, Hurlbert
1971). Because species richness, the Shannon index and the Gini—Simpson index do not measure the same quantities, justifying the
choice of one of them to represent diversity is particularly difficult.

A second problem is that the Shannon and Gini-Simpson indices behave in ways that do not make sense for a metric of diversity.
For example, if a diverse community (Fig. B2(a)) loses 1/3 of its species, the traditional Shannon and Gini-Simpson indices show
only small proportional changes (Fig. B2(b)). Even a loss of 2/3 of species does not result in dramatic changes in index values (Fig.
B2(c)). In contrast, all of the Hill diversity measures presented in this guide would give values of 30, 20 and 10 for the three com-
munities. This property of Hill diversities is called the ‘replication principle’ (Hill 1973, Chao et al. 2014a). Note that although in
the illustrations, individuals are lost along with their species, the values of all diversity metrics would be the same if total abundance
were held constant even as species were lost. That is because all the diversity metrics discussed in this guide consider only relative, not
absolute, abundance.
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Figure B2. Values for the traditional Shannon and Gini—Simpson indices, calculated for communities that have decreasing numbers
of species.
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Box 3. Defining Hill diversity

We define Hill diversity by the equation

D[zp()]

where D is diversity, S is the number of species, p, is the proportion of all individuals that belong to species 4, 7,is the rarity of species
i, defined as 1/p,, and £ is the exponent that determines the rarity scale on which the mean is taken.

An elegant aspect of Hill diversities is that Eq. B2 is the equation for the generalized weighted mean, or Hélder mean (Bullen
2003). We intentionally use the exponent € rather than ‘4’ (Jost 20006) to highlight this insight; it is easily shown that our equation is
algebraically equivalent to Jost’s, with £=1 — g (Supplementary information).

Hill diversities are a type of average. Specifically, they measure the mean rarity of the species in the sample, where the rarity of a
species is the reciprocal of its relative abundance (Patil and Taillie 1982). When computing this average, the rarity of each species is
first scaled by the exponent €, and then weighted by the relative abundance of that species. This average is then back-transformed onto
the diversity scale because of the outer exponent, the power of 1/£. It may be helpful to think of the exponent € as determining the
leverage provided to rare species, and to recognize that for all values of the exponent, each species is weighted by its relative abundance.
We discuss this idea further in Box 5.

Hill diversity formalizes a simple truism: a community consisting of species that are, on average, more rare has higher diversity

(B2)

(Patil and Taillie 1982, Tuomisto 2010, Botta-Dukdt 2018, Kondratyeva et al. 2019).

units, and do not scale intuitively, or even similarly, with spe-
cies gain and loss (Box 2; Jost 2009, Tuomisto 2010). These
problems have led to the suggestion that diversity lacks any
conceptual grounding (Hurlbert 1971).

Hill diversity: a solution

A unified method for measuring diversity was developed by
Hill (1973), and re-introduced to ecologists by Jost (2006).
This method takes as its starting point that both the num-
ber and the relative abundance of species are components of
diversity, and that these components cannot be fully sepa-
rated. The diversity metric developed by Hill (1973) consists
of a single equation that, depending on the value taken by its
sole parameter, the exponent that we call €, can vary from
counting all species equally, even if they are vanishingly rare,
to heavily emphasizing the species that are most common
(Box 3).

Hill diversity has several important advantages. First, Hill
diversities behave in ways that are logically reasonable for a
measure of diversity (Hurlbert 1971, Jost 2009, Tuomisto
2010). For example, if some proportion of a community’s
species were randomly removed, all Hill diversities decrease
by that proportion. Traditional diversity indices fail this and
other common-sense expectations.

But how do Hill diversities do this? One interpretation is
that Hill diversities express the diversity of a community in
terms of an imaginary community with that same diversity,
but in which all species are equally abundant (Jost 2006).
For example, imagine comparing two communities using a
given Hill diversity (i.e. with a given exponent in Eq. B2).
Imagine that community A has a diversity of 5 and com-
munity B has a diversity of 25. This means that community
A has the same diversity as a perfectly even community with
five species, and community B has the same diversity as a

perfectly even community with 25 species. Thus, there is
a concrete sense in which community B is five times more
diverse than community A. All Hill diversities can be inter-
preted this way.

A second advantage is that the calculation of Hill diver-
sity is simple and already familiar to ecologists. Like the tra-
ditional diversity indices, Hill diversity summarizes relative
(but not absolute) abundances, and the only data required
to compute the sample Hill diversity are the relative abun-
dances of species in a sample. The three forms of Hill diver-
sity most commonly used by ecologists are species richness,
and modifications of the traditional Shannon and Simpson
indices. The key insight of Hill (1973) was that these three
measures are special cases of the same general equation (Box
4). These three forms of Hill diversity — which we will refer
to as species richness, Hill-Shannon diversity and Hill-
Simpson diversity — differ only in how they scale rarity (Box
5). Richness uses an arithmetic rarity scale, which gives high
lcvcragc to, and therefore remains very sensitive to, rare spe-
cies; Hill-Simpson diversity uses a reciprocal scale, which
shifts leverage towards, and is thus dominated by common
species; Hill-Shannon uses a logarithmic scale, and falls
between the two.

A third, elegant aspect of Hill diversity is that each of its
forms are a type of average. Specifically, here we develop the
idea that rarity can be defined as the reciprocal of relative
abundance, and that Hill diversities calculate the mean of the
rarities of the species in the sample (Patil and Taillie 1982).
If a community includes many species, all rare, that com-
munity has high mean rarity. In contrast, a community with
only a few species, none of which is rare, has low diversity
and low mean rarity. This way of understanding what Hill
diversities ‘really are’ may be intuitive for many ecologists,
who are accustomed to thinking about rarity in the context
of diversity.
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Box 4. Three particularly useful Hill diversity metrics

While Hill diversities are a continuous function of the exponent € in Eq. B2, three particular integer values of € produce versions of
metrics that are already familiar to ecologists: species richness, Hill-Shannon and Hill-Simpson.

The only data required to calculate the Hill diversity of a sample are the number of individuals of each species found in each
sample. The equations below have only two types of parameters:

S=number of species in the sample
.= (number of individuals of species 7)/(total number of individuals in the sample)

Species richness emphasizes (provides higher leverage to) rare species, and can be simply calculated as:
S

This is equivalent to Eq. B2 when £=1.
Hill-Shannon diversity emphasizes neither rare nor common species. It is defined as the limit of Eq. B2 as £ approaches 0, and is
calculated with the base of the natural logarithm, ¢, raised to the power of the traditional Shannon entropy index:

S
> ziln(p)
e i=1

(B3)

Hill-Simpson diversity emphasizes (provides higher leverage to) the common species. It is equivalent to Eq. B2 when €=—1. It has
been described some authors as ENSPIE (Chase and Knight 2013), and it is equivalent to the inverse of the traditional Simpson index:

1

jzlm)z

z

(B4)

Sample Hill diversities can be computed using the function ‘renyi’ in the R package vegan (Oksanen 2016) and the
function ‘rarity’ in the R package MeanRarity (Roswell and Dushoft 2020), and Hill diversities of equal-sized or equal-
coverage samples can be approximately compared using the functions ‘iNEXT” and ‘estimateD’ in the R package iINVEXT
(Hsieh et al. 2016). Estimates for asymptotic values of Hill diversity are available in SpadeR (Chao and Jost 2015, Chao ecal.

2015).

The difference between richness, Hill-Shannon diversity
and Hill-Simpson diversity is that they calculate mean rarity
using different types of means: the arithmetic, geometric and
harmonic means, respectively. An important point, which
has generally been overlooked in the literature, is that these
means differ not in how they weight the values they average
(because in all cases, each value is weighted by its frequency)
but instead by how they scale these values. Each type of mean
locates a balance point among a set of items. But the different
means spread these items apart and squish them together dif-
ferently. Thus, they provide greater leverage to cither higher
or lower values, i.e. to either common or rare species. Many
ecologists are already familiar with this scaling process as it
is directly analogous to the use of link functions in general-
ized linear models. We explore this new way of visualizing
Hill diversities, and the different forms of means generally,
in Box 5.

Which Hill diversity to use?

Which variant of Hill diversity to use, then? There is no one
answer to this question. As Southwood quipped, about diver-
sity indices in general, “There can be no universal ‘best-buy,
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although there are rich opportunities for inappropriate
usage’ (Southwood 1978). Hill diversity diminishes these
opportunities, because Hill diversities require researchers to
consciously choose how much leverage they want to afford
to rare species. This decision is reflected in the value of the
exponent £. We discuss some advantages and disadvantages of
using different values of € below.

Species richness (€=1) is not recommended by any of
the authors who have systematically tested diversity met-
rics (Hurlbert 1971, Kempton 1979, Magurran and McGill
2011, Chase and Knight 2013, Haegeman et al. 2013),
because it is difficult to estimate accurately outside of an
experimental setting. Sample richness varies drastically with
sample size and sample equalization method. This is because
it is very sensitive to the rarest species. The same problem
affects asymptotic richness estimators (Melo 2004, Chao and
Jost 2015). Species richness is best reserved for special cases,
such as when the community is completely known, or pos-
sibly, when there is enough information to parameterize an
occupancy model (Guillera-Arroita et al. 2019).

Hill-Simpson diversity (£=—1) may be a good choice for
a research question that mainly concerns the patterns in the
relative abundances of common species, requires confidence
that the expected diversity would not change substantially



with additional sampling, or relates to the probability that two
randomly selected individuals are the same species (Simpson
1949, Hurlbert 1971). The reciprocal scale used to calculate
Hill-Simpson diversity spreads low rarity values apart and
squishes high ones together (Box 5). Therefore, Hill-Simpson

diversity is most sensitive to the differences in low rarity val-
ues (i.e. the relative abundance of common species). The
expected value of sample Hill-Simpson diversity tends to be
robust to sample standardization and to change little as sam-
ple sizes increases. Furthermore, true Hill-Simpson diversity

Box 5. A new way to visualize mean rarity

When ecologists calculate Hill diversity, they effectively calculate the arithmetic, geometric or harmonic mean species rarity. The expo-
nent ¢ in Eq. B2, which scales the rarities and determines what type of mean is calculated, could also be thought of as a link function.
Every ecologist has used a link function to transform values onto a scale at which they will be additive, calculated the mean, and then
back-transformed the mean onto the original scale. In fact, we do this just to calculate the standard deviation of a sample.

To calculate the standard deviation, we raise each difference from the mean to the power 2, add these new, squared values together,
divide by the sample size, and then back-transform to the original scale of the data by raising the computed mean to the power of 1/2.
In other words, we use the quadratic link function. The root mean square error of a model is computed the same way.

A generalized linear model with an identity link estimates the arithmetic mean of the data, and could be thought of as raising each
value to the power of 1, taking the mean, and back transforming the mean by raising to the power of 1. Of course, this is the same
as not transforming at all. When a log link is used in a generalized linear model, the data are transformed by taking the logarithm,
and then typically, the mean is back transformed to the original scale by exponentiating. Thus, the mean that is calculated with the
log link is the geometric mean (which is the limit of the generalized mean when the scaling exponent € approaches 0). The harmonic
mean uses the reciprocal function as the link (to transform, raise to the power of —1; to back transform, raise to the power of —1). A
similar link function is used with gamma error structures in generalized linear models.

But what do these transformed scales, these link functions, look like (Fig. B3)?
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Figure B3. A link function can be visualized in terms of how it scales values. On each scale, a power transformation with the scaling
exponent shown on the left, the two yellow points are equidistant from the blue one. It is not possible to align more than 2 points on
two different scales; here, each scale is aligned to show that 2 and the higher yellow value are equidistant from 3. On the quadratic
scale, the distance between two values is the difference between their squares. Thus, the distance between 2 and 3 is equal to the dis-
tance between 3 and V14 (-3.74) because 22 (4) and (V14)? (14) both differ from 3? (9) by 5. On the arithmetic scale, distances
between pairs of values are their arithmetic differences. Thus, the distance between 3 and 2 is equal to the distance between 3 and 4;
both differ from 3 by 1. On the logarithmic scale, the distance between two values is the factor (proportion) by which the two values
differ. Thus, the distance between 3 and 2 is equal to the distance between 3 and 4.5, because both differ from 3 by a factor of 1.5.
On the reciprocal scale, the distance between two values is equal to the difference in their reciprocals. Thus, the distance between 3
and 2 is equal to the distance between 3 and 6.

The three ‘link functions’ used in computing the arithmetic, geometric and harmonic means correspond to scaling exponents of 1,
0 and —1 in Eq. B2, respectively. The mean of a set of values, when put on the appropriate scale, is the balance point between them.
This could be visualized as the fulcrum on a balanced lever. The scales differ in which values are spaced farthest apart (Fig. B3), and
thus which extreme values will be most displaced from the center, or given the highest leverage. As the scaling exponent decreases, the
leverage afforded to high values shrinks, and the leverage afforded the lowest values grows. For example, relative to the arithmetic scale
(exponent=1), a log-transformation (exponent=0) spreads the small values out but compresses the largest values together.

When thinking about the different Hill diversities, it may be useful to consider this leverage metaphor. Historically, the differ-
ences between Hill diversities with different exponents (for example, the difference between species richness, Hill-Shannon and
Hill-Simpson) have been discussed in terms of how heavily the exponents ‘weight’ rare or abundant species (Jost 2006, Magurran and
McGill 2011). From Eq. B2, it is clear that this is not the simplest interpretation. Regardless of the exponent, each species is always
weighted by its relative abundance, and every individual ‘counts’” towards the average by the same amount. What changes with the
exponent is the scaling of the species’ rarities, or how far apart rarity values fall (Fig. B4).
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Figure B4. Diversity, or mean rarity, is the balance point for the community along the rarity scale. Each panel shows the same ecologi-
cal community of 40 individuals and 6 species with abundances 20, 8, 5, 4, 2 and 1, and rarities 2, 5, 8, 10, 20 and 40, respectively.
Each block represents an individual; in this metaphor, the ‘mass’ of each ‘block’ is the same. Each individual’s x-axis value is its species’
rarity, which is the reciprocal of its relative abundance. All three panels display the same community: the same individuals, the same
species, and the same rarities; only the scaling of the rarities changes between panels. The community’s balance point along the rarity
scale, pictured in this figure as the fulcrum in each panel, is the mean rarity, or diversity, of the community. To ease comparison across
scales, in each panel, we marked the arithmetic mean with a rose dot, the geometric mean with a blue dot and the harmonic mean
with a green dot.

Panels differ in which exponent is used to transform the rarity scale. The arithmetic scale provides high leverage to very rare species;
although they carry little weight (few individuals), these species influence the mean a great deal because they sit far to the right of the
rarity scale. The arithmetic mean rarity of the community is the Hill diversity when €=1, and is equal to species richness (value=06).
The logarithmic scale provides less leverage to very rare species. Thus, the geometric mean rarity of the community is lower (value ~ 4).
The geometric mean rarity is also known as the Hill-Shannon diversity, or the Hill diversity when €= 0. The reciprocal scale accords
more leverage to low rarity values. Thus, the harmonic mean rarity, also known as the Hill-Simpson diversity, or Hill diversity when
¢=—1, is much lower still (value ~ 3). An interactive online application that enables users to specify species abundances and the scal-
ing parameter is available at <https://mean-rarity.shinyapps.io/rshiny_app1/>, and code for this and all main text figures is in the R

package MeanRarity (Roswell and Dushoff 2020).

may be estimated with litdle bias (Simpson 1949, Chao and
Jost 2015, Grabchak et al. 2017), although the uncertainty in
these estimates shrinks slowly with additional sampling, and
precise estimates remain difficult in more diverse, more even
communities.

Hill-Shannon diversity (€=0) lies between richness and
Hill-Simpson diversity, and may be the ‘just right’ measure
in many applications (Kempton 1979). The geometric mean
affords leverage to extreme values according to their propor-
tional, not absolute, difference from the mean. Thus, it can
respond strongly to both very high and to very low rarity
values. Another argument in favor of Hill-Shannon is that
many species abundance distributions are approximately
log-normal (Williamson and Gaston 2005, McGill et al.
2007), and thus their central tendency might be well
described by the geometric mean. Observed Hill-Shannon
diversity begins to stabilize at achievable sample sizes, and
asymptotic estimators for Hill-Shannon diversity perform
reasonably well (Beck and Schwanghart 2010). The Hill-
Shannon diversity retains some of the sensitivity of Hill
diversities with higher exponents (such as richness), and also
the robustness to sampling and sample standardization of
Hill diversities with lower exponents (such as Hill-Simpson
diversity). As a result, Hill-Shannon may be a good choice
for characterizing gradients in biodiversity in an ecologically
meaningful way.
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For research questions about diversity in a more general
sense, researchers should consider using all three metrics,
as well as intermediate values for the exponent £ (Fig. 3).
Although Hill diversities with different scaling exponents
tend to be highly correlated within communities (Magurran
and McGill 2011), they emphasize different aspects of the
community, and are not fully exchangeable (Hurlbert 1971,
Patil and Taillie 1982). Using more than one diversity metric
portrays the diversities of the communities most fully because,
for example, one community can be the most diverse when
its many rare species are given great leverage (when £ is large),
but a different community most diverse when its more even
distribution of more common species is emphasized (when ¢
is small) (Patil and Taillie 1982). Furthermore, Hill diversities
with different exponents can be compared to describe even-
ness and dominance, and to fully describe the shape of a spe-
cies abundance distribution (Hill 1973, Chao and Jost 2015,
Chao and Ricotta 2019). Diversity profiles are complex and
information rich, and therefore simple statistical methods to
compare them are unavailable.

A diversity profile is constructed by estimating Hill diver-
sity over the range of £ values. Researchers can do this in
R with the functions ‘Diversity” in the package SpadeR (for
asymptotic and sample diversities with estimated uncertainty;
plotting features built in), iNEXT’ in the package iNEXT
(for asymptotic and coverage-rarefied diversity estimates,
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Figure 3. It can be useful to visualize a ‘diversity profile’ across values
of the exponent €. Here we show the sample diversities of our four
bee communities plotted as a function of the exponent € in Eq. B2;
as £ increases, so does the leverage afforded to rare species. The
y-axis is the value of the diversity metric, as calculated from the raw
sample. The lines can cross because a sample can have, for example,
a large number of rare species (high richness, rightmost points) but
a small number of common species (low Hill-Simpson, leftmost
points), as compared with another sample (middle points are
Hill-Shannon).

with estimated uncertainty), and ‘renyi’ in the package vegan
or ‘rarity’ in the package MeanRarity (raw sample diversity)
(Chao et al. 2015, Hsieh et al. 2016, Oksanen 2016, Roswell
and Dushoff 2020). Each of these packages parameterizes
Hill diversity with the exponent g=1 — €.

Ecologists rarely use Hill numbers with € > 1; these met-
rics are too sensitive to rare species to convey meaningful
information about communities (Chao et al. 2014a). The
Hill diversity as £ approaches negative infinity equals the rela-
tive abundance of only the most common species. This Hill
diversity has been used as a dominance index (Berger and
Parker 1970). However, Chao and colleagues suggest that
litcle information about a community’s diversity is revealed
between £=-2 and —oco (Chao et al. 2014a), and suggest
calculating Hill diversity profiles from £=—2 to 1 (Chao and
Jost 2015).

Extrapolation and asymptotic estimators

A note on extrapolation per se

To this point, we have discussed standardizing via rarefaction,
but not extrapolation — that is, extending the pattern of spe-
cies detection to a greater sample size, effort or coverage than
has actually been obtained. Inferring what one might have
seen with additional sampling is obviously appealing, and

compatible, at least in principle, with sample standardization.
The past decade saw the introduction of unified methods for
rarefaction and extrapolation for diversity estimation, based
not only on sample size or effort, but also on sample coverage
(Chao and Jost 2012, Colwell et al. 2012, Chao et al. 2014a).

Standardizing to a level that involves extrapolation for at
least some samples could be preferable to, for example, rar-
efying to the size of the smallest sample and analyzing very
incomplete samples for every community. The caveat is that
the farther from the sample an extrapolation extends, the
more sensitive it is to the extrapolation method’s assump-
tions. A second issue is that neither empirical nor theoretical
work yet guides what level of sample completeness enables
robust comparison — though Chao and Jost (2012) suggest
that extrapolating to double the observed sample size entails
liccle risk even for species richness, and may allow researchers
to take better advantage of data from well-sampled commu-
nities. Because of these complexities and unresolved issues,
guidance on extrapolation per se is beyond the scope of this
guide. However, below we discuss asymptotic diversity esti-
mators, a popular technique that could be considered an
extreme form of extrapolation.

Are asymptotic estimators the solution?

Standardizing samples and then calculating sample diversity
is an imperfect approach to comparing true diversities; sam-
ple diversity is not expected to equal true diversity (Hurlbert
1971, Dauby and Hardy 2012, Chao et al. 2014a, Willis
2019). An alternative method is using asymptotic estima-
tors to predict what diversity would be, if each community
were censused completely (and therefore the diversity accu-
mulation curve would reach its asymptote; Chao and Jost
2015). Asymptotic estimators that do this are quite popu-
lar. However, we believe that asymptotic estimators have two
important limitations that ecologists sometimes overlook.

First, at feasible levels of sampling, asymptotic Hill diver-
sity estimators frequently do not reach their own asymp-
tote (Melo 2004, Beck and Schwanghart 2010, Chiu and
Chao 2016). In other words, the estimate of the asymp-
totic, ‘true’ diversity value can change systematically with
sampling (Fig. 2). This means that the diversity estimates
given by asymptotic estimators depend on sample complete-
ness, which hinders comparisons between communities and
between studies.

Second, the uncertainty associated with asymptotic esti-
mators can be large and diflicult to quantify, particularly
for richness (Haegeman et al. 2013). When sample cov-
erage is low, the approximated confidence intervals (CI)
around asymptotic diversity estimates for all Hill diversi-
ties are wide. Even so, they are not reliably wide enough:
strictly speaking, a valid confidence interval contains the
target parameter at least as often as the stated confidence
level (Casella and Berger 2002). However, the CI for asymp-
totic Hill diversity estimators frequently do not overlap the
true community diversity at their stated level (e.g. 95%;
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Mao et al. 2017). For example, for a simulated commu-
nity with a richness of 200, a Hill-Simpson diversity of
50, and a log-normal distribution of species relative abun-
dances, the ‘95% CI’ around Chaol asymptotic estimates
of richness include the true richness value less than 50%
of the time for a random sample of a few hundred indi-
viduals (Supplementary information). While the Chaol
richness estimator (and closely related Chao2 for incidence
data) are theoretically only ‘lower bounds’ for true species
richness (Chao 1984, 1987), anticonservatism in the pro-
posed intervals is evident for asymptotic Hill-Shannon and
Hill-Simpson diversity estimates as well (for the sample
sizes and log-normal abundance distribution tested here;
Supplementary information).

Confidence intervals for Hill diversity estimates remain
under development. The CI for sample Hill diversity — under
traditional rarefaction — include the expected sample diver-
sity at a rate closer to their stated confidence level than we
observed for asymptotic estimators (Chao et al. 2014a, Chao
and Jost 2015; Supplementary information). Of course, CI
for sample diversities and CI for asymptotic estimators are
trying to do two different things. CI for sample diversities aim
simply to contain the expected diversity of a sample, condi-
tioned on size or effort (Smith and Grassle 1977). The CI for
asymptotic estimators, by contrast, aspire to contain the true
diversity of the whole community — but often they do not.
ClI for expected diversity after standardizing by coverage are
also anti-conservative (Box 1, Supplementary information).

Is lacking valid confidence intervals a fatal flaw for a
method to estimate diversity? We believe it depends on the
application. Ecologists studying biodiversity will likely esti-
mate biodiversity across many communities, and then use
a statistical model to understand how biodiversity responds
to predictors, such as forest cover or temperature. In the
model, the uncertainty in the diversity estimates gets con-
flated with unmodeled but true variation between communi-
ties, and both contribute to the regression’s error term. This
problem can be remediated by increasing sample sizes (i.e.
diversity estimates from more communities). For example,
imagine sampling logged and unlogged forests to determine
how logging affects species diversity (Chao and Jost 2012).
Using a method such as standardizing by coverage or com-
puting asymptotic diversity estimates may fail to provide a
reliable estimate for any given site, but if enough sites are
sampled, could reliably identify a group-level pattern. These
methods would be preferable to a method that gave mislead-
ing estimates with better-known sampling uncertainty, such
as sample diversity estimates under traditional rarefaction

(Chao and Jost 2012).

Whether to use coverage or asymptotic estimators

Standardizing by coverage, like using asymptotic estima-
tors, should preserve relative differences in diversity bet-
ter than traditional rarefaction (Chao and Jost 2012, 2015,
Chao et al. 2014a). Yet both of these approaches lack valid
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CI, and both are sensitive to sample completeness. Overall,
we identify a subtle advantage to using sample diversity after
standardizing by coverage, rather than using asymptotic
diversity estimators.

Coverage is explicit about sampling completeness, whereas
asymptotic estimators attempt to estimate the true diversity
of the full community, a quantity that is not conditioned on
sampling... but the resulting estimate often is. Because nei-
ther method is robust to sampling completeness, we advocate
using the one (i.e. coverage) that both accounts for sample
completeness and describes it in ecologically meaningful
terms. Conditioning comparisons on sample completeness
can help ecologists guard against interpreting patterns that
reflect researcher decisions, rather than ecological processes.

Why not use coverage and asymptotic estimators
together?

In practice, ecologists typically choose a method of sample
standardization (effort, sample size, or increasingly, cover-
age), often involving rarefaction, or use asymptotic diversity
estimators to extrapolate unstandardized samples. However,
it is tempting to combine the two methods, because the
asymptotic estimators themselves tend to be sensitive to sam-
pling completeness (Close et al. 2018).

While this sounds promising, in our view there are impor-
tant issues to resolve before coverage-based sample standard-
ization should be combined with asymptotic estimators.
How to combine the two tools has not yet been systemati-
cally developed or tested; there is not even evidence that any
combination provides an advantage over using one or the
other alone. Future theoretical and simulation-based work
could build the case for a combined approach.

Standardizing samples, then calculating
Hill diversity: a worked example with our
bee data

In this section we provide a demonstration analysis, using
some of our own data, to show how the researcher’s choice
of how to standardize samples and calculate diversity affects
interpretation of diversity patterns. We use three data stan-
dardization methods (effort, size and coverage), as well as
all three Hill diversities (richness, Hill-Shannon and Hill-
Simpson). We also compare asymprotic Hill diversity esti-
mates to the standardized sample diversities. Our purpose is
not to determine the accuracy of these methods, which we
cannot do: we do not know the true diversities of our bee
communities. Rather, our goal is to show how our choice of
standardization method and diversity metric, as well as our
level of sampling, can determine the results. Because ecolo-
gists would likely use available uncertainty estimates when
analyzing their own data, we have included these in our
example.



effort (14 transects) size (255 individuals) coverage (95.7%) asymptotic
I i
@ I I I I I I 1004
[}
2 Ly
i 504
!
0 0
. T T T I
g I }: :{ 15
2 + )
K o HEpdoFrd
¢
; 51 51
125 1001
g 100 10.0 4
g g : T g SR t
? 5.01 I I I 5.0 I
T 25 251
0.0 0.0

Figure 4. The answer to, ‘which communities are more and less diverse, and by how much?” depends on both how the samples are standard-
ized (columns), and which diversity metric is used (rows). Standardization method matters most when Hill diversity is strongly driven by
the rarity of the rarest species (species richness, top row) and matters least when rare species have little leverage (Hill-Simpson, bottom row).
Error bars are ‘95% CI’ that assume uncertainty arises from the process of randomly sampling a fixed number of individuals (i.e. the num-
ber of individuals in the sample after standardization) from each community; raw (i.e. equal effort) samples used for asymptotic estimates.
We plotted the asymptotic Hill diversity estimators with separate y-axes, to facilitate comparing relative differences in estimated diversity.

The data presented were not collected to compare local
diversity between the sites shown (Roswell et al. 2019a, b),
so we leave it to the reader to imagine conditions that could
motivate such a comparison. We could imagine, for example,
that only one site can be preserved, and the goal of measur-
ing diversity is to identify the highest-value (highest diversity)
site to protect, or that different plant restoration methods
were deployed at different sites, and the goal of measuring
diversity is to assess restoration success.

In our example dataset, we note first that which com-
munity we would judge most diverse, and by how much,
depends on how we standardize our data. This can be seen
by focusing on one row at a time in Fig. 4. When we stan-
dardize by size, we could conclude that species richness is
fairly similar across the four bee communities, but when we
standardize by effort or coverage, strong differences among
communities emerge. These findings reinforce our argu-
ment that sample standardization is an important choice
that researchers need to make carefully when measuring
diversity.

Second, the choice of Hill diversity (richness, Hill-
Shannon or Hill-Simpson) drives our understanding of the

relative diversity of these four communities. We can see this
by focusing on one column at a time in Fig. 4. For example,
consider the column for which the data are standardized by
coverage (Fig. 4, third column from left). Using richness as
our metric indicates that there are large differences in diver-
sity between the four communities, and that the purple
community is the most diverse. Using Hill-Shannon or
Hill-Simpson, however, leads us to the conclusion that the
pink community is most diverse. Furthermore, when Hill-
Shannon diversity is used, the pink diamond community
appears around 25% more diverse than the purple triangle
community, but when Hill-Simpson diversity is used, this
difference increases to about 80%. We expected this result,
because communities with many rare species need not also be
‘most diverse’ when using metrics that emphasize rare species
less. This underscores the importance of researchers explicitly
stating what aspects of diversity matter most for a particular
question, and then choosing the appropriate Hill diversity to
reflect those aspects.

Third, there are interactions between the choice of
sample standardization method and the choice of diver-
sity metric. As expected, although relative Hill-Shannon
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Figure 5. In addition to standardization method (columns), Hill diversities (rows) are sensitive to the amount of sampling (x-axis). To gener-
ate this figure, one to fourteen 30-min data collection events per community were resampled without replacement 9999 times. For each
group of 9999 random subsamples, average effort (number of 30-min transects resampled), average size (number of individuals), or average
coverage is plotted on the x-axis, and average sample diversity is plotted on the y (with tick marks places at log scaled intervals, but actual
diversity values shown). The logarithmic y-axis reveals a constant relative difference in diversity as a constant distance between lines.
Uncertainty estimates omitted for clarity. Diversity often increases rapidly as coverage gets very close to one, because in our communities
(and in natural communities in general) there are many rare species, each of which makes up a small share of the total abundance.

diversities still depend on standardization, Hill-Shannon is
far more robust than richness to standardization method.
Hill-Simpson diversity is even more robust than Hill-
Shannon diversity. While the absolute values of asymptotic
diversity estimates are higher than the sample diversities, we
see similar relative diversity patterns using asymptotic esti-
mators and coverage-based rarefaction. The robustness of
Hill-Shannon and Hill-Simpson to sample standardization
method is a strong argument for using these Hill diversities,
rather than richness.

Finally, we note that the relative diversities for our four
samples are sensitive to sampling completeness, even after
standardization (Fig. 5). If any Hill diversities were robust to
sampling completeness, we would observe a constant distance
between the lines for each community within a panel of Fig. 5
(i.e. the colored lines would increase in parallel). Clearly this
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is not the case for any of the Hill diversities shown, regard-
less of how we standardize samples. It is also not the case
for asymprotic Hill diversity estimators, which exhibit differ-
ent — but not less — sensitivity to sampling completeness up
to the point we sampled each community (Supplementary
information). This should be concerning to field ecologists,
who rarely have the luxury of comparing complete samples.
Even the sample diversity rankings, not to mention the rela-
tive differences in diversity, vary with sample completeness
for all Hill diversities. In sum, sampling completeness almost
always affects diversity estimates.

Overall, we find that if we were testing a hypothesis
about biodiversity responses, or making management deci-
sions based on diversity rankings, our findings could change
dramatically with the choice of Hill diversity, the method of
data standardization and the amount of sampling. The results



from this pedagogically selected dataset do not indicate what
happens in all datasets, yet they illustrate that those choices
can matter.

Premises and promises of Hill diversity and
coverage

Two premises underlying the tools reviewed in this guide
are: 1) when ecologists measure the biodiversity of a com-
munity, they have a notion of the spatial, temporal and
taxonomic scale at which the community exists, and 2) that
relative, but not absolute, abundance determines biodiversity.
Furthermore, many of the tools assume that the pool of indi-
viduals sampled from a community is static, well-mixed, and
in some cases infinite, whereas in reality species abundances
and spatial distributions fluctuate through time, communities
are rarely truly ‘closed,” and ecologists often sample destruc-
tively, removing individuals from the pool as they sample.

Measuring diversity at only one or a few spatio-temporal
scales may be insufficient to describe biodiversity gradients in
nature (May et al. 2018). Hill diversity does enable describ-
ing the scale-dependent nature of biodiversity by partition-
ing diversity into alpha (local), beta (dissimilarity/turnover)
and gamma (larger-scale) components that can be normal-
ized to compare patterns across different regions and times-
cales (Chao and Chiu 2016). Hill diversities with different
scaling exponents are not expected to respond identically
as grain size, study extent or sampling intensity increase;
contrasting these responses may reveal processes of ecologi-
cal interest (Chase and Knight 2013, Chao and Chiu 2016,
Chase et al. 2018). To date, research on the scale-dependent
nature of biodiversity measurement focuses heavily on fitting
curves to species abundance distributions (Williamson and
Gaston 2005, Matthews et al. 2019), or richness- and occa-
sionally Hill-Simpson diversity-based measures (Chase and
Knight 2013, Chase et al. 2018, 2019, Antio et al. 2019,
Ricotta et al. 2019).

Using a range of Hill diversities, including richness, may
help ecologists refine hypotheses and models of biodiver-
sity response to scale and global change, which local rich-
ness alone can, famously, fail to illustrate clearly (Chase and
Knight 2013, Cardinale et al. 2018). When coverage and
Hill diversity are used together, they should enable ecologists
to separate patterns in relative abundances from patterns in
total abundance, address artefacts of sampling completeness
at different scales (Kraft et al. 2011, Engel et al. 2020), and
develop richer hypotheses about patterns in species abun-
dances over space and time (McGill et al. 2007).

Conclusions

The unavoidable truth is that when ecologists compare local
diversity, they must choose how sensitive their comparison
will be to the rarest species, which are always inadequately

represented in samples. There is no robust way to simply
‘count’ the species in most natural communities; richness
estimated from samples depends on species’ relative abun-
dances and sampling completeness.

Whereas ecologists usually cannot compare true species
richness, we have shown how ecologists can compare commu-
nities using sample richness, Hill-Shannon and Hill-Simpson
diversity, after rarefying samples to equal coverage. Using Hill
diversities requires only minor modifications to the diversity
metrics that ecologists already use. These small modifications
make a big difference, as Hill diversities scale intuitively, are
always expressed as rarities, and require that ecologists explic-
itly choose how sensitive their diversity metric is to rare species.

Standardizing samples by coverage improves upon simply
acknowledging the fact that both sample size and the true
distribution of species abundances drive diversity estimates.
To capture the diversity of more diverse communities, larger
samples are needed. Coverage measures how representative
samples are of the communities from which they are drawn,
so equalizing coverage before measuring diversity can reduce
bias in biodiversity comparisons. When it is possible to
estimate sample coverage while data collection is ongoing,
this could help researchers allocate effort more efficiently,
guiding which communities require more or less sampling
(Rasmussen and Starr 1979).

Even though the tools contained in this guide are the
best available at present, they are still under development.
Ecologists still lack heuristics for identifying sufficient
sample coverage levels, for choosing the appropriate Hill
diversity scaling exponent(s) for a given question or data-
set, and for robustly accounting for uncertainty in diver-
sity estimates. Nonetheless, when researchers have a strong
argument for comparing the species diversity of communi-
ties, the tools in this guide should facilitate doing so in
a principled manner. Using coverage with Hill diversity,
ecologists can assess relative differences in diversity between
communities based on sample data, while clearly
expressing the sample completeness upon which their
inferences depend.
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Glossary
Sample diversity
True diversity

Asymptotic diversity

Coverage
Hill diversity
Hill-Richness

Hill-Shannon
Hill-Simpson

Leverage

Rarefaction

Extrapolation

The (Hill) diversity of a sample. This quantity can be calculated directly, as the number of species and
their relative abundances are known.

The true (Hill) diversity of an entire community.

An estimate of the true (Hill) diversity of the community. This is known as the ‘asymptotic’ diversity
because as the sample size increases, sample diversity and other diversity estimates converge on their true
values, which are seldom known a priori.

The proportion of individuals in the community belonging to species represented in a sample.
Also called Hill numbers; the generalized mean species rarity.

The Hill diversity when €=1, the arithmetic mean rarity, or the total number of species. Referred to
simply as ‘richness” throughout.

‘The Hill diversity when £=0, the geometric mean rarity, or the exponential of Shannon’s entropy.

The Hill diversity when €=-1, the harmonic mean rarity, or the inverse of Simpson’s
concentration index.

The influence of a value on the mean depends on the frequency of that value (‘weight), but also its dis-
. § : .

placement from other values in the set (‘leverage’). The farther a given value from the others, the more

leverage that value has. Rescaling shifts leverage from low to high values, or vice-versa.

A process of randomly subsampling by removing individuals or subsamples.

An approach to estimating the diversity of an augmented sample that may resemble rarefaction ‘in reverse.”

Rarity

1/relative abundance (Patil and Taillie 1982).
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Appendix A: Linking equations for Hill diversity

It has previously been observed that Hill diversity is a measure of mean rarity (Patil and
Taillie 1982). However, may not be immediately obvious how Hill diversities are in fact
calculating means. Here we link our intuition that Hill diversity computes mean rarity and

notational conventions for Hill diversity in the literature.

Suppose we have a simple community of 10 individuals of 4 species with abundances
5, 2, 2, and 1. Let us use the relative abundance of each species as a measure of its

commonness, such that the commonness of species i is

abundance;

c; = 5T ebundance, Equation 1
where the sum is taken over the total number of species in the community, S. Rarity will
simply be the reciprocal of this quantity,

s ,
r=1 .= Lizy abundance; Equation 2

abundance;

Then, we could ask what the average rarity of species in this community is. One
approach would be to sum the rarity of each of the four species, and then divide this
sum by 4:

10 10 10 10
Gt )

4

Equation 3
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This would give us an average rarity of 22/4, or 5.5. But perhaps this is an unintuitive
way to average; there is only one individual with rarity 10, after all, yet the way we
computed the average community rarity, it contributes as much to the average as the 5

individuals with rarity 2. Perhaps this seems strange.

A popular solution to this kind of problem is to weight each unique quantity by the

number of times it is observed, thus producing a weighted mean:

Ui Wi, Equation 4

which describes the mean of a set of n items (in our case rarities) indexed by i, xi, each
of which is weighted by something, w; (In our case that weight is the relative abundance
of species /). To return to our previous notation, we now represent each species by its

rarity value, and weight each species by its relative abundance in the sample, or its

commonness:
Yiom Equation 5

If we re-compute the mean using equation 5, we find each species i contributing exactly
a quarter of the rarity, i.e. 1, to a community mean rarity of 4. This is somewhat odd: we

just determined that in order to count the rarities fairly, we needed to account for the

relative abundance of each species, yet all species appear to contribute equally to the
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mean rarity regardless of relative abundance. Nonetheless, this is a widely used
diversity metric: species richness. In other words, richness is the arithmetic mean

community rarity.

From this example, it should be clear how this quantity is at once “independent” of the
distribution of relative abundances of the species, and also an abundance-weighted
average of species rarity (a “Hill diversity”). It should also be clear why this diversity

metric is so sensitive to the number of rare (and poorly sampled) species.

As discussed in the main text, richness, the arithmetic mean, is a special instance of the

generalized mean:

1
EFwixh) L Equation 6

This looks similar to equation 5 but there’s a new parameter, {. The generalized mean
of a set (Equation 6) always lies between the smallest and greatest element (inclusive),
and the exponent { determines the leverage accorded to large versus small elements in
defining the location of center of the set. Our original (arithmetic) mean, where { = 1, is
very sensitive to large (outlier) values of rarity (i.e. especially rare species). In fact, the
arithmetic mean rarity increases just as much when you include one individual of a new,
rarest species as if you included hundreds or even millions of individuals of a new, but

very common one!
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The geometric mean (the limit of Equation 5 as £ -> 0) or the harmonic mean (f = -1) are
also sensible ways to compute the mean community rarity. Rather than giving extreme
leverage to the rarest species, these means emphasize more common ones, but to

different extents.

Hill-Simpson is the harmonic mean community rarity. The harmonic mean is, in sharp
contrast to the arithmetic mean, insensitive to outliers (in our case, very rare species). It

increases greatly with more common species, but hardly at all with rarer ones.

Perhaps when we discuss the average rarity of our community, we seek a goldilocks
answer that is driven by the rarity of typical species, rather than the rarest or most
common? There is a special mean for this, too: the geometric mean (Hill-Shannon). The
geometric mean lies between the arithmetic and harmonic means, and might be just

right (Jost 2006).

In closing, let us return to Hill numbers, which ecologists agree are the best way to
describe the diversity of ecological communities (Ellison 2010, Haegeman et al. 2013),
and show that they measure the mean community rarity. The equation for Hill numbers
is in fact an equation for the generalized mean (Equation 5), but traditionally it is
expressed in a somewhat different form. We will start with the generalized mean. The
mean rarity in the community, in which the rarity of each species i (r) is weighted by its

commonness (c;, relative abundance, also the inverse of rarity) is given by:



1
92 (farh L Equation 6
93
94  Replacing rarity, ri, with 1/c; we have

95

% f Cil_l)l/l Equation 7
97
98  Substituting q for 1-f we have
99
100 (&} cl-q)l/l-q Equation 8
101

102  which has been the traditional equation for the Hill diversity of order q (Jost 2006).
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Appendix B: Simulation methods for assessing confidence interval performance
We simulated 2 species abundance distributions based on their true richness of 200
and evenness of 0.2456 (based on a Hill-Simpson diversity of 50, evenness= [Hill
Simpson-1]/[richness-1] = 49/199) (Chao and Ricotta 2019) with the function “fit. SAD”
the R package MeanRarity (Roswell and Dushoff 2020). One of these was
approximately log-normally distributed, and the second was approximately gamma

distributed.

To assess confidence intervals for asymptotic Hill diversity estimates, and for sample
Hill-diversity estimates under traditional size-based rarefaction, we took 5000 samples
each for 9 sample sizes ranging from 100 to 10,000 (with replacement) from the log-
normal species abundance distribution. For each sample, we generated the nominal
95% confidence intervals for both the sample diversity and the asymptotic diversity
following (Chao and Jost 2015, Hsieh et al. 2016). Briefly, this procedure generates an
extrapolated species abundance distribution by augmenting the sample. The
augmented sample is then bootstrapped to simulate sampling uncertainty, and sample
or asymptotic diversity is then computed for each bootstrapped sample. The resulting
distribution of bootstrapped diversity values is then centered on the sample diversity or
asymptotic estimate for the original sample; 0.025 and 0.975 quantiles of this new
distribution are then chosen to provide a confidence interval. Here, we asked whether
these confidence intervals contained, in the case of asymptotic diversity, the true
diversity of the original simulated community, or in the case of sample diversity, the

average sample diversity from 5000 random samples of the same size (Fig. S1).
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Figure S1. Nominal 95% CI do not consistently include their target value 95% of

the time for either sample diversity or asymptotic diversity estimates, but are

much closer for sample diversity. To generate this figure, fixed numbers of

individuals were randomly sampled 5000 times from the same, log-normally

distributed SAD for each sample size, and for each sample, both the asymptotic
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diversity estimate and associated confidence intervals (left) and the sample
diversity and associated confidence intervals (right) were computed for species
richness, Hill-Shannon, and Hill-Simpson diversity. The y-axis in each panel
represents the percentage of samples for which the estimated 95% confidence
intervals contained (left) the tfrue diversity of the simulated community or (right)
the average diversity of samples with a given number of individuals; in each case
this should be 95%. We plotted the Y-axis on the log-odds scale to be able to

show both strong conservativism and strong overconfidence.

To assess the confidence intervals around estimated diversity under coverage-based
rarefaction, we employed a three-step procedure. In step 1, we determined, for both the
gamma- and log-normally distributed SADs, the relationship between sample coverage
and expected diversity. In step 2, we computed estimated diversity under coverage-
based rarefaction with the R package iINEXT for random samples of several different
sample sizes from each SAD. In step 3, we determined the percentage of Cl generate in

step 2 that overlapped the true expected diversity given by the regressions in step 1.

Step 1: We took 100,000 random samples consisting of between 1 and 5000 individuals
from each SAD, and for each sample, computed observed Richness, Hill-Shannon
diversity, Hill-Simpson diversity, and sample coverage. To best estimate the mean
sample diversity associated with each coverage level, we fit a generalized additive
model (GAM) for each SAD and diversity type (6 regressions total). GAMs are

appropriate for large numbers of points, whereas LOESS regression, another non-
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parametric smoothing approach, becomes very computationally expensive as the
number of points gets large. Thus, we used the R package mgcv and used the
penalized smoother by specifying option bs="cs” (Wood 2019), fitting a separate GAM
for each SAD and Hill diversity. We used the mean sample diversity for each SAD
(estimated by the model fits) at 19 evenly- spaced (on the log-odds scale) sample
coverage levels between 62.2% and 99.3%. With 100,000 samples, we had high
confidence we could accurately estimate the true mean diversity along the sample
coverage gradient. We confirmed that our choice of basis function would not drive our
results by fitting the GAM with the options bs = “ps”, bs = “cr”, and bs="ts”, following

steps 2-3 below, and comparing results, which did not qualitatively differ.

Step 2: We then took 5000 new, random samples from each SAD, for each of 20
evenly-spaced sample sizes between 100 and 2000. For each of these 100,000
samples, we used the function “estimateD” from the R package iINEXT (Hsieh et al.
2016) to compute the 95% CI for expected diversity for each of the 19 target coverage

levels. We discarded any estimates that required extrapolation.

Step 3: For each combination of SAD, sample size, sample coverage level, and Hill

diversity, we computed the percentage of Cl that contained the expected diversity.
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Figure S2. Proposed confidence intervals (Cl) for sample-coverage based
rarefaction are too narrow. When coverage is <1, the 95% Cl include the
expected sample diversity at far below their nominal rate (red horizontal line).
This result did not depend on the shape of the SAD (rows), and held for all Hill

diversities (columns). The y-axis, the percent of Cl that overlapped expected
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182 diversity, is plotted on the arithmetic scale to include values of 0 and 100%.

183

184  Our results confirm our intuition that the Cl under coverage-based rarefaction are too
185 narrow (anti-conservative). This was expected because the procedure for estimating the
186  CIl does not account for uncertainty in the relationship between sample coverage and
187  expected sample size for a given community. Instead, the procedure estimates

188  uncertainty in expected diversity, given a fixed sample size. Our simulations reveal that
189  uncertainty in the sample size - sample coverage relationship is important to account for
190 when generating Cl for coverage-based rarefaction. Code for all analyses will be

191  publicly available on GitHub at the time of publication.
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Figure S3. Asymptotic estimators and sample diversity are both sensitive to
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sample completeness, but not in identical ways. 9999 random samples of one to

fourteen 30-minute transects were randomly sampled without replacement. For

each sample, the number of individuals, estimated coverage, sample Hill

diversity, and asymptotic Hill diversity estimate were computed. For each sample

size, the mean value for effort (i.e. number of transects), number of individuals,
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200
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203
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205

206

sample coverage, and diversity estimate is plotted. For each group of 9999
random subsamples, average effort (number of 30-minute transects resampled),
average size (number of individuals), or average coverage is plotted on the x-
axis, and average sample diversity is plotted on the y (with tick marks placed at
log scaled intervals, but actual diversity values shown). The logarithmic y-axis
reveals a constant relative difference in diversity as a constant distance between

lines.
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